Мой забор - Выбор. Законы. Изгородь. Калитка. Монтаж. Ограждения. Каменный

Мой забор - Выбор. Законы. Изгородь. Калитка. Монтаж. Ограждения. Каменный

» » В какую сторону устанавливаются лежни. Современные проблемы науки и образования. Нивелир поможет выявить высокие места

В какую сторону устанавливаются лежни. Современные проблемы науки и образования. Нивелир поможет выявить высокие места

1

Проведен анализ несущей способности применяемых конструкций кранового пути. Выявлено, что основным их недостатком является чрезмерность трудозатрат по устройству и содержанию. Предложена конструкция на основе деревянного «лежня» с необходимым прочностным расчётом. Расчёт выполнен на основе составленной методики, с учётом технических параметров элементов, составляющих конструкцию в целом, но только для неуплотнённых грунтов в подстилающем слое. По полученным данным, представленным в графической форме, показана возможность применения кранового пути с деревянным продольным «лежнем», даже для подстилающего слоя из неуплотнённого грунта. Очевидно, что запас прочноcти конструкции обеспечивается отношением коэффициентов постели, уплотнённых и неуплотнённых грунтов в подстилающем слое.

крановый путь

коэффициент постели

подстилающий слой.

1. ГОСТ Р 51248-99. Пути наземные рельсовые.

2. Инструкция по устройству и эксплуатации, перебазированию рельсовых строительных башенных кранов. СН 78-79. Госстрой СССР. М.: Стройиздат, 1980.

3. Инструкция по устройству и содержанию рельсовых путей козловых кранов на предприятиях ТПО «Свердлеспром». Свердловск, 1988. 49 с.

4. Разработка методики расчета рельсовых крановых путей на блочном железобетонном основании. Отчет по научно-исследовательской теме 26/83.Гос.рег.№01.83.0029692. Свердловск, 1984.

5. Тагильцев Н. Д. Расчет жестких колейных покрытий лесовозных автомобильных дорог Урала и Сибири // Межвузовский сборник. Вып. 2. Свердловск, 1979.

На предприятиях, эксплуатирующих грузоподъемные механизмы с рельсовыми направляющими, применяют обычно крановые пути нескольких конструкций:

  • деревянные полушпалы типа: 1А, 1Б по ГОСТ78-89;
  • железобетонные полушпалы, типа: ПШН1-13-325-1 и ПШН4-13-325-1;
  • железобетонные балки типа: БРП-62.8.3 и БРК-6.24-04;
  • железобетонная плита.

Также известна конструкция кранового пути на балках УЛТИ-6,25.

Все варианты конструкций известных крановых путей имеют, каждая в отдельности, свои преимущества и недостатки.

Анализ несущей способности кранового пути всех конструкций показывает, что основным их недостатком является чрезмерность трудозатрат по их устройству и содержанию. Из чего можно выделить ряд необходимых исследований по повышению прочностных характеристик и созданию универсальности конструкций кранового пути:

  • исследование и разработка более современной и прочной конструкции кранового пути на основе «нано лежня»;
  • исследование прочностных характеристик направляющих (рельса) с целью облегчения конструкции, либо замены направляющих на более современные безрельсовые.

Существующие крановые пути имеют ряд существенных недостатков. Во-первых, сравнительно большой расход древесины, которая необходима для изготовления полушпал, во-вторых, возникают трудности при рихтовке шпал. При той конструкции крановых путей, которая в настоящее время применяется, довольно сложно добиться того, чтобы требуемые нормы эксплуатации крановых путей выполнялись. Одним из главных недостатков является неравномерная просадка крановых путей, возникающая в ходе эксплуатации крана.

В настоящее время широко стали применяться рельсовые пути с железобетонными опорными элементами. Имеется опыт и в лесной промышленности. В Нижне-Сергинском ЛПХ около 4 лет эксплуатировался участок на балках УЛТИ-6,25 под краном ЛТ-62. Всё это время подъемка и рихтовка пути не осуществлялась, а крановый путь, в частности его параметры, не претерпели каких-либо значительных изменений.

Ещё в 1986 году для условий нижнего склада Тугулымского ЛПХ была предложена новая конструкция верхнего строения кранового пути на деревянных продольных лежнях, которая была проверена по прочностным характеристикам материала с определением поперечного сечения лежня. Лежень - это деревянный брус размером сечения 200х200мм. Рельс в расчете приняли марки Р-65, как и в эксплуатируемых крановых путях повсеместно.

Конструкция представляет два соединенных между собой болтами бруса. Длина опорного элемента 6,24 м, сечение бруса 200х200. На концах опорного элемента имеются уширения, которые расположены под стыками рельс. Они изготавливаются из того же бруса. Опорные элементы имеют между собой жесткое соединение. Такая конструкция, по нашему мнению, позволит надежно эксплуатировать как сам кран, так и крановые пути.

Ниже приведена последовательность расчёта согласно разработанной нами методике.

Принятые обозначения, расчетные параметры.

Мi - ординаты линии влияния изгибающего момента в сечении под i -тым колесом;

Рi - ординаты линии влияния реактивного отпора и просадки рельса в сечении под i -тым колесом; b - ширина нижней постели подрельсового элемента, м;

l - длина опорного подрельсового элемента, м;

Wp ,Ip - соответственно, момент сопротивления изгибу, м3 и момент инерции сечения рельса относительно горизонтальной оси, проходящей через центр тяжести сечения, м4 (принимается по табл. 24 СН 78-79);

WБ,IБ - момент сопротивления изгибу, м3 и момент инерции сечения балки, м4;

ЕБ,ЕР - соответственно, модули деформации дерева и рельсовой стали, МПа;

с - коэффициент постели опорного элемента, МПа, который определяется по формуле 4.1 :

с = (2,25...2,55)ЕЭ; (1)

Меньшее значение коэффициента принимается для неуплотненных зернистых грунтов, а большее - для плотных. ЕЭ - эквивалентный модуль деформации основания, МПа, определяется для двухслойной конструкции основания по формуле 4.2 :

Еэ = Ео/(1-(2/П)(1-1/n3,5) arctg n(h/Д)); (2)

где Е0 - модуль деформации грунта земляного полотна, МПа, определяемый штамповыми испытаниями по ГОСТ 12374-87 при диаметре штампа Д=564мм n=(E1/Eo)0,4 ; (3)

Е1 - модуль деформации балластного слоя, МПа, принимаемый по паспортным данным карьерного материала; h - толщина балластной призмы, м;

Характеристика пути

Тип рельса - Р65;

Расстояние между осями 0,97 м;

Ширина нижней постели подрельсового опорного элемента b=0,4 м;

Расчетная длина l=6,24 м;

Вид балласта - щебень Е1 =130 МПа;

Толщина балласта h=0,2 м;

Вид грунта земляного полотна - песок мелкозернистый Е0=15 МПа.

Характеристика деревянных балок рельсового пути

Модуль деформации дерева: E=0,85.104 МПа;

Момент инерции расчетного сечения: IБ=bh3/12=0,4.0,23/12=13,34.10-5 м4; (4)

Момент сопротивления изгибу: WБ=bh2/6=0,4.0,22 =26,67.10-4 м4 ; (5)

Расчетное сопротивление изгибу: RБ =15МПа;

Жесткость балки: WБ=bh2/6=0,4.0,22 =26,67.10-4 м4 ; (6)

Несущая способность балки: МБпред =WБ.RБ =26,67.10-4.15.106 =40,0 кН.м; (7)

Характеристика Рельса Р65.

Момент сопротивления изгибу: WP=404 см3;

Момент инерции: IР=2998 см4;

Жесткость рельса: ВP=6,29 МН.м2;

Несущая способность: MPпред=121,2 кН.м.

Определение напряжений в элементах рельсового пути

Определяем приведенную длину λ балки, для этого определяем коэффициент относительной жесткости системы балка - основание по формуле 4.8 : К=(c.b/4.BC)0,25 , (8)

где: с - коэффициент постели опорного элемента, МПа/м;

b - ширина нижней постели подрельсового опорного элемента, м;

ВС =ВБ +ВР - суммарная жесткость двухслойной балки, МН.м2;

Еэ - эквивалентный модуль деформации основания, МПа; n=(130/15)0,4=2,37;

Эквивалентный модуль деформации:

Еэ=15/(1-(2/3,14)(1-1/2,373,5)arctg 2,37(0,2/0,564))=26,016 МПа;

Коэффициент постели опорного элемента: с=2,25.26,016=58,5 МПа/м;

Суммарная жесткость двухслойной балки: ВС=2,27+6,29=8,56 МН.м2;

Коэффициент относительной жесткости: К=(58,5.0,4/(4.8,56))0,25=0,908;

Приведенная длина определяется по формуле 4.9 : λ=K.l=0,908.6,24=5,67; Округляем до λ=5,5. Рассчитываемая балка относится к категории коротких, т.к. λ<7. Из таблицы 6.1 , для соответствующей λ, выписываем табличные значения ординат линий влияния реактивных давлений РТ и изгибающих моментов МТ, по которым строим соответствующие линии влияния (см. рис. 1).

Рис.1. Линии влияния МТ и РТ

Определяем значения наибольшего изгибающего момента в среднем сечении балки по формуле 4.10 : МС =P.l.∑MiT =250.6,24(0,0432-0,002)=64,27 кН.м,

где МiT - величины безразмерных ординат линий влияния изгибающего момента под действующими силами.

Изгибающие моменты в рельсе и балке будут соответственно определяться по формулам 4.11, 4.12 :

МP=МС(EP.IP/ВС)=64,27(6,29/8,56)=47,23 КН.м < MPпред=121,2 кН.м;

МБ=МС(ВБ/ВС)=64,27(2,27/8,56)=17,04 КН.м < MБпред=40,0 кН.м.

Таким образом, действующие изгибающие моменты ниже предельных значений. Определяем напряжение σБ в балласте на контакте с опорным элементом по формуле 4.14 :

σБ=(P/b.l)∑PTi=(0,25/0,4.6,24)(2,8273+1,7)=0,45 МПа

где РiT - значения безразмерных ординат линии влияния реактивных давлений под соответствующими силами.

Условие прочности по балласту удовлетворяется.

Для определения напряжения σо, на основной площадке земляного полотна, предварительно, вычисляем толщину эквивалентного слоя грунта по формуле 4.15 :

hЭ=h(E1/Eo)0,4=0,2(130/15)0,4=0,47 м;

Затем по соотношению hЭ/b находим значение коэффициента изменения давления в толщине грунта: KZ=0,586;

σ0=KZ.σБ=0,586.0,45=0,26

Условие прочности по основной площадке также удовлетворяется. Из расчетов видно, что при расположении нагрузки на середине балки, условия прочности как по балласту, так и по основной площадке удовлетворяются. Произведем расчет балки при условии, что нагрузка будет расположена на конце балки, то есть на шарнире (см. рис. 2). В этом сечении величина изгибающего момента будет равна нулю. Уширения имеются на сравнительно малом участке рассчитываемого опорного элемента, поэтому значение характеристик не изменяется, вплоть до расчета приведенной длины: λ=5,5. Из таблиц 5 и 6 выписываем табличные значения ординат линий влияния реактивных давлений PiT для λ=5 и λ=6. Методом интерполяции определяем эти значения для λ=5,5 и строим линию влияния (см. рис. 2).

Рис. 2. Линия влияния РТ табличная

Определяем напряжение σБ в балласте на контакте с опорным элементом по формуле 4.14 :σБ=(P/b.l)∑PTi=(0,25/0,8.6,24)(5,4247+1,6)=0,35МПа

Условие прочности по балласту на уширениях выполняется.

Определяем напряжение σо, на основной площадке земляного полотна. Значение величины hЭ=0,47 не изменяется. По соотношению hЭ/b находим значение коэффициента изменения в толщине грунта по таблице из : KZ=0,7675;

Напряжение на основной площадке земляного полотна определяем по формуле 4.16 :

σ0=KZ.σБ=0,7675.0,35=0,268

На рассчитываемой балке все условия прочности полностью выполняются. В результате расчета предложенного варианта кранового пути получены линии влияния МТ и РТ (рис. 1 и 2), показывающие распределение давления секции кранового пути и изгибающего момента. По выше полученным данным определены напряжения σ0 и σБ

(σ0=0,268

на основной площадке земляного полотна и в балласте на контакте с опорными элементами. Их значения ниже допускаемых значений, то есть надежность эксплуатационных свойств такого кранового пути обеспечивается. Наиболее значительным недостатком, по нашему мнению, следует считать использование тяжелого металлического рельса Р-65. Нами предпринята попытка замены рельса Р-65 на более легкие направляющую без изменения жесткости поперечного сечения и надежности верхнего строения кранового пути.

Рецензенты:

Ковалев Р. Н., д.т.н., профессор, заведующий кафедрой Уральского государственного лесотехнического университета, г. Екатеринбург.

Черемных Н. Н, д.т.н., профессор, заведующий кафедрой Уральского государственного лесотехнического университета, г. Екатеринбург.

Библиографическая ссылка

Салахутдинов Ш. А., Шабардин С. В. ОБОСНОВАНИЕ И РЕЗУЛЬТАТЫ РАСЧЕТА КРАНОВОГО ПУТИ НА ПРОДОЛЬНОМ ЛЕЖНЕ // Современные проблемы науки и образования. – 2013. – № 1.;
URL: http://science-education.ru/ru/article/view?id=8323 (дата обращения: 02.11.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Лежень это бревно, брус в горизонтальном, лежачем положении в разных сооружениях, устройствах.

НИВЕЛИР ПОМОЖЕТ ВЫЯВИТЬ ВЫСОКИЕ МЕСТА

1. Срубите высокие места перфоратором. Отдельный участок фундамента может быть высоким и создавать проблему для разметки и выравнивания лежня.

2. Если такой участок не очень длинный, его довольно быстро можно срубить перфоратором.

Чтобы получить наилучшие результаты

1. Установите нивелир так, чтобы чётко видеть каждый угол фундамента в относительно узком поле зрения (90° или меньше). Это поможет избавиться от ошибок, связанных с поворотами нивелира на большие углы. Чтобы свести к минимуму ошибку, установите нивелир над фундаментом как можно ниже.

2. С помощником, удерживающим рейку, прострелите внешние углы abcd и запишите их высоту. В нашем примере самый высокий угол b.

3. Из высоты самого высокого угла вычтите высоты остальных углов и запишите разницу - это будет толщина прокладок.

4. Подкладками выведите углы до уровня высокого угла с допуском ±1,5 мм.

5.Протяните шнурку между углами. (Для зон между ними прочитайте раздел «Выставить уровень лежней по шнуру».

Светодиодный Светодиодная лампа потолочный светильник 48 W 36 W 24…

На протяжении многих веков древесина была и остается одним из основных материалов для строительства жилья. Однако если в России испокон веков дома строили в виде сруба, то в Канаде и США уже более 200 лет самой популярной конструкцией является каркасная. За последние 30 лет эти страны вложили сотни миллионов долларов в усовершенствование каркасной технологии , которая, как показывает многолетний опыт, наиболее экономичная, качественная и рациональная.
Каркасные технологии обладают массой преимуществ. Одно из них - возможность добиваться идеальной геометрии стен и перекрытий, что, в конечном счете, позволяет сократить стоимость и сроки отделочных работ. Однако все это справедливо при условии тщательной разметки каркасов. Тема сегодняшнего разговора - несущая конструкция пола .
Большинство современных домов строят с каркасной системой типа "платформа" (рис. 1 ).

В них пол каждого этажа служит основанием, на которое устанавливают стены. Последний этаж завершают потолком и крышей. Такая "послойность" позволяет разделить процесс разметки на простые операции.

Подготовка фундамента

Мы уже не раз отмечали, что основой для разметки каркаса строения является верхняя плоскость фундамента . Поэтому ее надо тщательно проверить до начала любых работ по устройству несущей основы пола.
Сначала измерьте диагонали и убедитесь, что фундамент - прямоугольный и точно соответствует размерам на чертеже. При этом следует учесть, что если размеры отличаются от заданных менее чем на 25 мм, то такие ошибки нетрудно исправить регулировкой положения лежней. Для этого установите их так, чтобы они располагались параллельно и под прямым углом друг к другу, а на верхней плоскости ленты фундамента отбейте меловые линии. Например, на (рис. 2 ) показана ситуация, при которой скомпенсировать непрямоугольность фундамента можно, если выпустить лежень за верхний правый угол фундамента на 20 мм. Если же размеры отличаются от чертежных более чем на 25 мм, то разгонять ошибки придется на следующих этапах - при установке лаг и окантовочных балок.

После проверки точности размеров, прямоугольности фундамента и выполнения необходимых корректировок установите нивелир и проверьте высоту всех углов. Допустимым перепадом по высоте считается перепад по длинной стороне фундамента - 20 мм, а по короткой - 12 мм.
Если высота углов - в допустимых пределах, проверьте верхнюю плоскость фундамента на наличие неровностей. Для этого туго натяните шнур над вырезанными из доски - "пятидесятки" блоками, а затем возьмите в руку такой же блок и проведите им по всей стене фундамента под шнуром (рис. 3 ).

При этом обязательно учтите, что разброс досок по толщине не должен превышать 3 мм. Поэтому все блоки лучше отпилить от одной доски.

Исправление погрешностей фундамента

А что делать с впадинами и "горбами" на ленте фундамента? Если неровности - в пределах 1,5 мм, беспокоиться не стоит. Впадины же глубиной до 5 мм перед установкой лежня заливают раствором или укладывают в них деревянные клинышки. Если же есть "горбы", то можно подстрогать нижнюю плоскость лежня или же вообще ничего пока не предпринимать, а отложить подгонку на следующие этапы работы - установку окантовочных балок и лаг. Наконец, если верхняя плоскость фундамента слишком неровная или существенно отклоняется от горизонта, целесообразно сделать заливку горизонтальной подушки цементным раствором по всему периметру. Решить такую задачу можно просто - отбейте по нивелиру горизонтальные линии на несколько сантиметров ниже верха фундамента, а затем, ориентируясь на них, прикрепите доски опалубки и залейте раствор (рис. 4 ).

Установка лежней

После проведения необходимых доработок на заделанные в фундамент анкерные болты можно устанавливать лежни. Разметку отверстий под болты делают так (рис. 5 ).

Лежень укладывают на стену фундамента и прижимают его к болтам . Затем треугольником переносят положение каждого болта на доску. Причем делают это с обеих сторон болтов, в результате чего каждый анкер отмечают парой параллельных линий. После этого замеряют расстояние между меловой линией, которая соответствует положению лежня на стене фундамента, и каждым болтом и переносят эти размеры на лежень. В результате получаются квадратики со стороной, соответствующей диаметру анкера. Центры отверстий под болты будут на пересечении диагоналей этих квадратиков.

Установка промежуточных опор

Нередко для поддержки лаг приходится устанавливать промежуточную опору (балку или стенку), которая должна быть заподлицо с лежнем (рис. 6 ).

Заниматься этим приходится зачастую на неровной поверхности основания подвала.
Чтобы получить ровную поверхность основного пола , натяните шнур на уровне лежней поперек фундамента и ориентируйтесь на него в дальнейших действиях. Если балка будет установлена на кирпичные столбы, их высоту можно подогнать с помощью прокладок. Если же балка опирается на деревянные стойки, их размещают там, где они будут стоять постоянно, а затем по шнуру размечают их высоту. При этом следует обратить внимание на то, чтобы во время разметки стойки стояли строго вертикально. Отпиливают стойки с учетом высоты балки.
Для возведения несущей перегородки с двойной верхней обвязкой опускают со шнура отвес и делают мелом отметки на полу подвала. Разметив таким образом положение нижней обвязки, ее отпиливают из обработанной давлением доски сечением 50x200 мм. После этого нижнюю обвязку укладывают вдоль меловой линии и размечают места установки стоек. Поскольку основание неровное, измерять, размечать и отпиливать каждую стойку нужно по отдельности. Для этого их ставят на нижнюю обвязку и определяют высоту. Затем из получившегося значения вычитают толщину сдвоенной верхней обвязки и отпиливают стойки "в размер". После этого можно заготовить и разметить верхнюю обвязку и собрать стенку. Если все сделано правильно, верхняя плоскость стенки будет горизонтальной и заподлицо с лежнем.
Работая по такой методике, следует помнить о двух вещах. Во-первых, стойки нужно прижимать к нижней обвязке со значительным усилием. Например, чтобы выбрать зазоры между бетонным полом и обвязкой, можно встать на нее около стойки. Во-вторых, во время разметки стойки не забывайте контролировать ее вертикальность уровнем.

Разметка и установка системы пола

После установки центральной балки или несущей стенки можно приступать к монтажу несущей основы пола. Как мы уже отметили, это еще один шанс исправить ошибки, допущенные на предыдущих этапах работы.

Установка окантовочной балки

Прежде всего, надо разметить положение окантовочной балки . Если лежень лежит горизонтально и точно соответствует размерам на чертеже, отложите от его внешнего ребра толщину окантовочной балки и отбейте ее положение мелом. Теперь можно либо установить окантовочную балку, либо разметить и установить лаги. Причем не очень важно, что вы решите устанавливать сначала, но в любом случае нужно ориентироваться на линию, отбитую на лежне.
Для окантовки всегда приберегайте прямые доски, а на каждой "выгнутой" доске для лаг стрелкой отмечайте выпуклую сторону. Кроме того, угольником проверьте торцы каждой доски, которые должны быть отпилены строго под прямым углом. Сильно "выгнутые", скрученные и с поперечным изгибом доски сразу отложите в сторону. Из них можно будет вырезать короткие детали - перемычки, проставки и пр.
А если фундамент с изъянами? Например, есть "горб" где-то по центру стены. Чтобы его скомпенсировать, подберите прямую доску для окантовочной балки и установите ее с помощью уровня горизонтально на прокладках по линии разметки. Теперь циркулем замерьте зазоры и перенесите их на балку (рис. 7 ). Затем отпилите или отстрогайте балку по разметке и установите на место. Конечно, когда вы будете подгонять лаги к балке окантовки, их нижние ребра тоже придется подрезать, чтобы верхние ребра лаг были заподлицо с окантовкой, но это уже сделать гораздо проще.

А что если фундамент горизонтален, но его размеры отличаются на несколько сантиметров? В этом случае решение одно - консольно выпустить каркас пола над лентой фундамента.
Действуют в этом случае так. Сначала прибивают первую и последнюю лаги, затем натягивают шнур между их верхними внешними углами, после чего устанавливают промежуточные лаги максимально близко к шнуру. В заключение монтируют окантовочную балку.

Разметка положения лаг

Лаги нужно устанавливать с таким шагом , чтобы листы фанеры стыковались строго по оси симметрии досок. Наиболее распространенный шаг - 400 мм, однако в чертежах может быть указан и другой промежуток - например, 300 или 600 мм. Чтобы ошибки не накапливались, лучше работать рулеткой со стальной лентой, отсчитывая размеры от одной точки. В случае же, если лента короче фундамента, замеры делают от минимального количества точек. Например, стену фундамента длиной 14,4 м размечают лентой длиной 7,5 м в два захода.
Сделав все отметки, пройдитесь по всей длине лежня с карандашом и угольником и проведите прямые разметочные линии. Одновременно отмечайте, с какой стороны от них будут стоять лаги. Традиционный способ - поставить крестики с правой или левой стороны линий (на них потом вы и установите лаги).

Разметка с заданным шагом

Одна из частых ошибок - начать разметку не с нужной точки, например, приняв за "0" край лежня. В итоге первый лист фанеры приходиться отпиливать, чтобы он стыковался на лаге. А ведь сэкономить время и материал нетрудно. Например, чтобы состыковать лист фанеры длиной 2400 мм по оси симметрии лаги толщиной 40 мм, она должна быть на расстоянии 2380 мм от внешнего контура обвязки и с крестиком впереди линии разметки (рис. 8 ).

От первой линии и размечайте положение остальных лаг с шагом 400 мм. (Не забудьте про крестики впереди линий разметки.)

Д. Кэролл (США). Журнал "Дом" №8/2006 г.

Лежень — горизонтальный брус или бревно, опирающееся обычно на плоскую поверхность, например, пол или ленту фундамента. Лежень служит основанием стены или какой-то другой вертикальной конструкции. Он передает нагрузку стены и равномерно перераспределяет её на основание.

При установке непосредственно на фундамент, лежень крепится к ленте фундамента или сваям анкерными болтами. На железобетонном фундаменте лежень должен быть обязательно снизу гидроизолирован и тщательно пропитан антисептиком.

Горизонтальный уровень и положение лежня должны быть тщательно проверены до установки стены.

При строительстве , в качестве нижней обвязки обычно использует брус 200х200, к которому прикрепляют доску 150х40 со сдвигом 12 мм чтобы СИП-панель оказалась заподлицо с внешней поверхностью бруса. Эту доску и называют «лежень». При установки стены на перекрытие из СИП, лежень устанавливают непосредственно на поверхность СИП со сдвигом 12 мм. При СИП-строительстве лежень скрепляется с панелью клеем и шурупами по нижнему краю вертикальной панели, полностью погружаясь в панель.

Корни слова:

Лежень (м.) лежачее бревно, брус, плаха, подкладываемая под испод чего; брус, закладываемый в бут, под основанье стен; красный брус в скрынях или в вешняках водяных мельниц: он нажимает торос и в него крепятся белоноги: поперечные брусья под рельсы железных дорог, шпал (Владимир Иванович Даль, Толковый словарь живого великорусского языка )

Другие значения:

В горном деле — лежень — нижняя часть рамной крепи, которая укладывается непосредственно на почву или в канавку поперек выработки.

В первую очередь следует разобраться, что такое лежень и для чего он применяется, чтобы иметь ясное представление о конструкциях с использованием этого элемента. В толковом словаре Ушакова такое понятие трактуется как брус или бревно, находящееся в горизонтальном положении и служащее опорой для конструкции. В строительстве под этим словом чаще подразумевается деревянный профиль с большим сечением, которое позволяет ему выдерживать дополнительные вертикальные нагрузки, но это может быть еще ЖБИ.

Чаще всего применение лежащих балок связано с возведением деревянных домов, хотя это не является их монополией. Ведь лежень – это не только нижняя или верхняя обвязка деревянной коробки, но также и мауэрлат, и центральная балка на перекрытии, устанавливаемая под коньком. Следовательно, такой элемент может использоваться в зданиях из любого материала.

Монтаж лежня для стропильной системы

В каких конструкциях используются лежни

Нижняя обвязка для каркасного дома

Итак, что такое лежень, теперь понятно, осталось разобраться с теми узлами, где его используют.В основном, это две части здания и постаменты для распределительного оборудования:

  • фундамент и пол здания;
  • потолок и крыша;
  • фундамент для промышленного оборудования.

На изображениях видно использование деревянного лежня для обустройства пола на чердаке и стропильной системы. В настоящее время в промышленном строительстве (многоэтажные здания) деревянные балки для пола и фундамента используются крайне редко – там, в основном используют железобетонные блоки и перекрытия. Но при монтаже двускатных крыш стропильную систему все равно делают из деревянных брусьев, следовательно, там нужны и горизонтальные деревянные балки.

Следует отметить, что двускатные крыши для промышленного строительства сейчас уже редкость, поэтому в конструкции здания фактически отсутствуют горизонтальные балки (бетонные, в том числе). В основном такие элементы используются в частном домостроении для стропильных кровельных систем.

Железобетонные лежни для трансформаторных подстанций

Для монтажа трансформаторных подстанций, во избежание контакта оборудования с землей, используют промышленные железобетонные лежни типа ЛЖ. Это железобетонные балки Т-образного сечения, при монтаже которых широкая часть укладывается на пол, а ножка литеры служит опорой для монтируемого прибора.

Размер поперечного сечения профиля унифицирован – ширина пяты 400мм, а высота литеры – 500 мм. Разной может быть только длина, где ЛЖ1,6 имеет 1600мм, а ЛЖ10,4 – 10400мм. Такие балки устанавливаются на железобетонные фундаменты.

Для чего нужен прямой угол и как это касается горизонтальных балок

Закладка фундамента определяет вес, размеры и качество всего вышестоящего строения – масса здания рассчитывается с мощностью основания, а геометрические формы связаны с его периметром. Если углы фундамента будут прямыми, то углы между стенами тоже будут иметь 90ᵒ, и свесы крыши окажутся одинаковой ширины по каждой стороне или по всему периметру (в зависимости от проекта).

Столбчатый фундамент для деревянного дома

Поэтому нижняя обвязка (ростверк, венец) выполняется, как четырехугольник с углами 90ᵒ, где диагонали точно совпадают друг с другом по длине. Таким же требованиям соответствует мауэрлат, так как от него напрямую зависит установка стропильной системы. Если верхняя обвязка будет иметь форму параллелограмма, то пропорции нарушатся и закрепить стропильные ноги ровно будет невозможно.

Монтаж горизонтальных балок в строительстве дома

В качестве лежня в большинстве случаев используется цельный или клееный брус, хотя в некоторых случаях применяется ошкуренное или оцилиндрованное бревно. В любом случае правила монтажа таких балок подчиняются общим принципам постройки зданий.

Как вычислить и проверить прямые углы

Прямой угол определяется на строительном участке на месте закладки фундамента – в соответствии с ним будет задан общий периметр постройки. Получить стык двух линий такого типа можно без сложных приборов, при помощи шнура (хлопчатобумажной нитки, которая не растягивается), колышков и метрической рулетки. Но здесь следует проявить внимательность – чем точнее будут устанавливаться размеры, тем лучше будет геометрия закладки основания.

Способ определения прямого угла

Обратите внимание на чертеж вверху:

  • в точке B в землю вбивается колышек и к нему привязывается шнур, другой конец которого отводится в точку A или в точку C, на 3м или 4м соответственно;
  • протянутый отрезок по известным причинам должен получиться параллельным либо соседнему участку, либо улице, чтобы построенное здание симметрично вписывалось в экстерьер;
  • аналогичным способом растягивается второй кусок шнура под углом к первому – при этом один отрезок растяните ровно на 3 м, а второй – ровно на 4м;
  • если концы A и C развести между собой ровно на 5м, забив там колышки, то угол ABC получится прямым, на 90ᵒ, и четырехугольник для закладки фундамента будет размечаться относительно этого вычисления.

Проверка закладки фундамента и обвязки

Длина каждой из сторон основания задается в соответствии с проектом – тем периметром, который будет у строящегося дома. Когда будут вбиты колышки в четырех углах, геометрия проверяется еще раз – диагонали должны точно совпадать друг с другом (допуск на погрешность ±1-2мм). В случае несовпадения диагоналей углы замеряются заново, и проверяется ровность линий периметра.

Проверка диагоналей нижней обвязки

Если в доме подразумеваются какие-либо пристройки, стоящие на таком же фундаменте, то разметка осуществляется аналогичным способом, тогда лежнина стыках будут иметь прямые углы. В таких случаях крыши получаются сложными (многоскатными) и малейший сбой на фундаменте напрямую отразится на их геометрии.

Даже если при закладке фундамента произошел небольшой сбой относительно углов, и получилось отклонение в несколько градусов, ситуацию можно исправить при помощи обвязки. Если для готового фундамента можно допустить погрешность ±20мм, то для обвязки только ±3-5мм. При помощи этих лежней собирается геометрически правильный прямоугольник, и периметр всего здания тоже получается правильным (прямоугольным).

Расчет горизонтальных балок для потолка и крыши

Если меж этажное перекрытие делается деревянными балками, или лежнями, которые несут на себе нагрузки от мебели и стоек, поддерживающих потолок, то расстояние между ними и их поперечное сечение определяется длиной пролета – это длина бруса (бревна) опирающегося на противоположные стены. Например, для балок длиной 5м и сечением 125×200мм устанавливается шаг 60см, но если сечение увеличивается до150×225мм, то шаг уже будет 100см. Все выкладки есть в таблице.

Таблица расчета деревянных балок перекрытия

Если говорить о выборе сечения лежня для перекрытия (балка находится на весу), то самым прочным будет профиль 5 к 7. Это означает, что по высоте брус должен иметь 7 мер, а по ширине 5, например, если высота будет 200мм (200/7=28,5), то ширина нужна 28,5*5=142,5мм. Но таких сечений не бывает, поэтому подбираются наиболее близкие значения, где в любом случае высота больше ширины.

Эти выкладки нужны для того, чтобы при вертикальной нагрузке прогиб горизонтальных балок был минимальным, а допустимый прогиб составляет 1/200-1/300 от длины. Получается, что пятиметровый лежень в подвешенном состоянии при вертикальной нагрузке может прогибаться на 1,5-2см. При монтаже таких перекрытий брусья подтесывают в виде арки и через некоторое время они фиксируются в строго горизонтальном положении с учетом прогиба.

Еще один способ расчета высоты сечения подвешенных лежней заключается в отношении их длины и высоты сечения по принципу 1/25. То есть, вертикальное сечение пятиметровой балки должно быть 5/25=0,2м, а вот его ширина уже будет подбираться в соответствии с шагом. Эти выкладки актуальны и для чердака – там тоже могут быть вертикальные нагрузки от каких-либо складированных вещей и кровельной системы.

Для мауэрлата или по перекрытию балки могут быть более тонкими, так как они лежат на плоскости. Но если крыша без мауэрлата, то вместо него стропила крепятся к верхней обвязке, а между собой фиксируются лежнями, которые одновременно служат основанием для упора стоек под стропила.

Некоторые нюансы монтажа

Устройство двускатной стропильной системы

Если балки перекрытия не служат опорой для вышестоящей конструкции, то их обычно не воспринимают в качестве лежней, хотя они таковыми являются по своей сути. Здесь уже лежнями называют те профили, которые кладутся поверх перекрытия и служат опорой для стропильной системы.

Их количество зависит от предполагаемой нагрузки на крышу (масса снега и ветер) – то есть, это может быть одна балка, которая проходит под коньком, по одной или две балки по разные стороны конька или перемычки между стропильными ногами. Сечение бруса (бревна) в таких случаях подбирают в соответствии с сечением стропил – желательно, чтобы оно не было меньше.

Сборка стропил на земле

На верхнем фото показано, как собирают стропила на земле, временно соединяя их между собой, чтобы все треугольники в точности соответствовали друг другу. Здесь нижняя перемычка будет лежнем, так как она ляжет на плоскость перекрытия. Это название определяет наличие стоек для подпора стропильных ног.

Для выравнивания и вентзазора используют подкладки

Лежни также устанавливаются на бетонные перекрытия, которые не всегда создают единую ровную плоскость. Поэтому, для выравнивания этих балок используются подкладки (пластиковые, металлические, деревянные), которые также способствуют созданию вентиляционного зазора. При недостаточной вентиляции чердака этот зазор увеличит срок эксплуатации профиля, так как естественная циркуляция воздуха будет его высушивать.

Подводя итог, следует отметить, что лежни не всегда опираются на плоскость по всей длине – в некоторых случаях в их роли выступают балки перекрытия (пола). Это, конечно, упрощенные конструкции, но, тем не менее, свою функцию они выполняют.

Видео: установка лежня крыши